
DCII Standards Design

4 Design Standards
This section describes the standards for objects that will be encountered or defined in the Design phase of
application development.

Section 4 Revised 1/28/2002 Page 1 of 35

DCII Standards Design

4.1 Database Design Transformer

4.1.1 Settings

4.1.1.1 Database

DES-01	 The database name selected is “<none>”. This means that the database and tablespace settings in
Designer may be left blank. The table definitions are initially generated without
defining/implementing against a database, tablespace or storage clause. This is also true for the
generation of the index definition under the table definition.

4.1.1.2 Keys

DES-02	 The cascade rules for the newly generated foreign key definitions should be the default value of
“RESTRICTED”. Cascade rules will depend on business rules and should be handled on a case by
case basis if the default is not used. Document any deviations from using RESTRICTED in the
entity model description.

DES-03	 Surrogate keys are to be defined using the shared sequence domain appropriate for the sequence.
Surrogate keys are named using the convention:

• SEQ_ID
• SEQ_Vn

DES-04 The maximum identifier length should be the default value of 30.

4.1.1.3 Other Settings

DES-05 The ordering of the Columns should be as follows:

• Primary Key Columns (major to minor)
• Mandatory Columns (including User Audit Columns)
• Discriminator Columns
• Foreign Key Columns before Attribute Columns
• Grouping Columns by their Source Entity
• LONG Datatypes

NOTE: Long and long raw columns should be moved to the bottom of the column list after the table
is generated. Only one of these types of columns is allowed.

Section 4 Revised 1/28/2002 Page 2 of 35

DCII Standards Design

4.2 Tables

4.2.1 Naming Convention

DES-06 Define table names in singular. Name tables derived from an entity using the convention:

<application prefix>_<entity_name_in_singular>

Refer to Appendix B for the application prefix names.

DES-07	 Tables that implement an entity must have the same name as the entity they implement, with the
spaces translated to underscores. If the table is not based on an entity, then it must be named using
the DFAS standard abbreviations, using underscores between segments.

Table names must be unique within the first 19 characters. This allows for the creating of snapshots
when a two-character prefix is added to the table name. If the resulting name has more than 26
characters, work with DFAS Data Administration to shorten the table name.

4.2.2 Definition

DES-08	 The Designer created short name alias should be kept to 3 characters whenever possible to prevent
names from becoming too long. The maximum alias length is 6 characters.

DES-09	 Enter the full name of the table/view in the Display Title field for each table/view. These names will
be seen by end users. The full name is found in the “Long Name” property.

DES-10	 Do not deviate from the default value for Init Trans, unless you predict that the table will form a “hot
spot”, requiring many users to update a small number of rows simultaneously. Document any
deviation from the default value in the Description belonging to the table definition, using the
keyword INIT TRANS.

DES-11	 Do not specify values for both PCTFREE and PCTUSED. For large tables, specify in the Description
what the source of this information is, using the keywords PCTFREE/ PCTUSED; include the
sample size. (Base the values of PCTFREE and PCTUSED on the guidelines presented in the
ORACLE8 Server Administrator’s Guide.)

DES-12	 Expand the description of a table to include any design level requirements. The initial description
came from the entity description.

DES-13 Define the purpose and usage in detail for tables that do not directly implement an entity.

DES-14	 All table definitions will be generated from the appropriate entity or entities in the logical data model
and will not be created manually. This does not apply to tables which are created specifically to
facilitate the physical implementation of a function.

DES-15	 All tables must have an alias. The alias must conform to the same standard set forth for entity short
names. If the table is based on an entity, then the alias must be the same as the entity short name.

DES-16	 To ensure that the appropriate meta-data is included in the Oracle data dictionary, all tables must
have a comment entered into Designer. This comment should describe the basic information stored in
the table.

Section 4 Revised 1/28/2002 Page 3 of 35

DCII Standards Design

4.3 Columns

4.3.1 Naming Convention

DES-17 Define column names in singular.

DES-18 Do not use the table alias as a prefix in column names with the exception of foreign key columns.

DES-19	 If the resulting name has more than 30 characters, use the approved acronyms and abbreviations in
the appendices to shorten it.

DES-20	 Do not start column names with P_. The Forms Generator confuses such a column with parameters
and will fail with an error message.

DES-21	 Columns that implement an attribute should have the same name as the attribute they implement,
with the spaces translated to underscores. If the column is not based on an attribute, then it should be
named using the naming standard set forth for attributes with the exception that an underscore is used
instead of a space between segments.

DES-22	 Keep column names short, but still logical and self-descriptive. Do not repeat the table name in the
column name. Word abbreviations in the column name must follow the approved DFAS
abbreviation conventions. (Appendix B)

DES-23	 If you choose to resolve a sub-type design using one table, introduce a discriminator column to
distinguish sub-types using the naming convention:

<super_entity_shortname>_TY

DES-24	 Define the discriminator column with datatype VARCHAR2(6), with the sub-type entity short names
as allowable values.

DES-25 Define system-generated primary key columns using the name ID.

DES-26 Name foreign key columns using the convention:

<table_alias_referenced_table>_<primary_key_column_name_referenced_table>

OR

For multiple foreign keys to the same table:

<table_alias_referenced_table>_<relationship identifier>

4.3.2 Definition

DES-27	 Assign to columns in a view the same name as the columns in the underlying tables. For columns not
directly based on database columns, refer to the conventions for naming columns. For columns from
different tables, but with the same column name, prefix the column name with the table alias even if
only one of the columns is used in the view.

DES-28	 Any column that ranges over a fixed set of predefined values that is less than 21 values should be
associated with a static domain that describes that set of values.

Section 4 Revised 1/28/2002 Page 4 of 35

DCII Standards Design

DES-29	 Any column that ranges over a dynamic set of values that is less than 21 values should be associated
with a dynamic domain that describes that set of values.

DES-30 Any column that ranges over 20 values should be placed in a reference table.

DES-31	 Define indicator columns that are used to select a small set in a table as optional and VARCHAR2(1)
with allowable values Y and N. If the options are 3-way logic, describe why this is necessary.

DES-32	 For columns of datatype RAW and LONG RAW, specify in the column Description the internal
format that is stored in the column by referencing the industry standard (if any). Use the keyword
DATATYPE RAW in the Description.

DES-33	 Columns that are optional should have a short column note that explains the meaning of a null value
occurring for that column, if the meaning is different from VALUE UNKNOWN.

DES-34 Define discriminator columns indicating a sub-type as NOT NULL.

DES-35	 Define the initial volume for each column (100% for mandatory columns). Specify the source of your
estimate for optional columns, if any, in the column Description using the keyword VOLUME.

DES-36	 Define the final volume for each column (100% for mandatory columns). Specify the source of your
estimate for optional columns, if any, in the column Description using the keyword VOLUME.

DES-38	 When a check box is defined as the display type, the normal default value must be set to a value
within the domain. Leave this field blank only when the check box column is optional, which implies
that the domain has only one allowable value and the other value is NULL. The check box for an
optional column with two allowable values will always insert one of those values and the column
will only be NULL at initialization of the record.

DES-39	 If a column is defined in a view, and the underlying table column has a sequence associated with it,
you should define the same sequence here.

DES-40 All referential and transactional tables require the standard audit columns. These are:

COLUMN NAME DATA TYPE DOMAIN
CREATED_BY VARCHAR2(30) TXT030
DATE_CREATED DATE
MODIFIED_BY VARCHAR2(30) TXT030
DATE_MODIFIED DATE

DES-41 Do not deviate from the standard database column datatype for non-displayed columns.

DES-42	 Use a check box when only one value is applicable in a yes/no situation, and the yes/no statement is
not contrived or obscure. A check box can be initialized to NULL, but it cannot be set to NULL.

DES-43	 Use a Boolean set when a maximum of one of out of two values is applicable, and if the list will be
static throughout the life of the product. A Boolean set can be set to NULL.

DES-44	 Use radio group, radio group (meaning) or radio group (abbreviation) when a maximum of one of
two to five values is applicable, and if the list will be static throughout the life of the product.

DES-45	 Use pop list, pop list (meaning) or pop list (abbreviation) when only one of three to fifteen values is
applicable, and the list is never expected to grow beyond fifteen.

Section 4 Revised 1/28/2002 Page 5 of 35

DCII Standards Design

DES-46	 Use LOV window when only one of five to twenty values is applicable, and the list is dynamic
during the life of the product. (All dynamic domains and reference tables should be displayed using a
LOV window.

DES-47	 Avoid text list, text list (meaning) and text list (abbreviation) due to the amount of space they
require. If using text lists, use them for lists of between three and twenty entries.

DES-48 Use combo box, combo box (meaning) or combo box (abbreviation) if all of the following is true:

• You have a list of allowable values that will be used most of the time.
• The user already knows that this list does not cover all situations.
• While at the same time the user is not able to complete the list.

DES-50 Foreign key columns should be displayed in the same sequence as their primary key counterparts.

DES-51 Do not specify the highlighting option at the column level, but rather at the module level.

DES-52	 The first letter of any word in a prompt is capitalized. Prompts should clearly indicate to what
property the column refers.

DES-53	 Hint texts take the form of the remainder of the sentence, “The value in this field registers <hint
text>“.

DES-54	 Hint texts for indicator columns use a question form. Do not include the allowed values in the hint
text, since this might complicate the repopulating of domain values.

DES-55 Define a descriptor column in all situations where the primary key has no meaning of its own.

DES-56	 Only use the type “Seq In Parent” (Sequence within Parent) in addition to server-side implementation
when this field needs to be displayed in the generated form.

DES-57	 If the column has a Derivation Expression that implements a Tuple Rule, you should record a
reference to this rule here.

DES-58	 Set the Suggestion List property to ‘checked’ if you use Combo Box as display datatype for the
column.

DES-59 Only use Value to enter a lower limit for a column.

DES-60 Only use High Value to enter a higher limit for a column.

DES-61 Do not use abbreviations. Use the domain object if you want to record an enumerated domain.

DES-62 Do not use meanings. Use the domain object if you want to record an enumerated domain.

DES-63	 The nature of a derivation imposes implementation at the server-side using a database trigger. Use
this expression only if the value of the derived column must be displayed on the screen. You should
still implement the derivation expression at the server-side, ensuring that the derived value is only
calculated if not yet done at the client-side.

DES-64	 The Derivation Expression of the column must not refer to itself. The derived column also must not
be defined to derive its value from an internal source, such as a generated sequence number, a
username, or sysdate. The column should not have a default value.

DES-65	 Do not use the Where/Validation Expression on the column level. Instead, define any
Where/Validation Expression on the table level in the Table Key Constraints Definition tabsheet.

Section 4 Revised 1/28/2002 Page 6 of 35

DCII Standards Design

DES-66 Describe the purpose of the column if this is not clear from the column name itself.

Section 4 Revised 1/28/2002 Page 7 of 35

DCII Standards Design

4.4 Constraints

4.4.1 Naming Convention

DES-67	 Constraint names will conform to the default Designer constraint naming conventions that are
automatically created when using the Database Design Transformer. Any manually created
constraints must conform to this standard.

4.4.1.1 Primary Key Constraint

DES-68	 Name primary key constraints using the convention::

<source_table/view_alias>_PK

Example:

For the table CUSTOMER with the alias CUST the primary key will be: CUST_PK

4.4.1.2 Unique Key Constraints

DES-69 Name Unique Key Constraints using the convention:

<table alias>_<UID Name>_UK

Where the UID Name is the name specified for a secondary unique identifier on the entity.

Example: The table called ORDERS (ORD) has two unique identifiers named ORD2 and ORD3.
The unique key constraints will be named:

ORD_ORD2_UK
ORD_ORD3_UK

4.4.1.3 Foreign Key Constraints

DES-70 Name foreign key constraints using the convention:

When there is only one foreign key constraint:

<source_table/view_alias>_<ref_table/view_alias>_FK

When there are multiple foreign key constraints to the referenced table, the relationship identifier
should provide a meaningful name to identify the purpose of the foreign key constraint:

<source_table/view_alias>_<relationship_identifier>_FK

Designer will generate one of two possible names depending on the number of relationships between
two entities. Foreign key names are usually generated with the following algorithm:

Foreign key = <table alias of the target table>_<table alias of the originating key>_FK

Example:

ORDER _LINES (ORDLIN) >---------- ORDERS (ORD)

Section 4 Revised 1/28/2002 Page 8 of 35

DCII Standards Design

The foreign key constraint on ORDER_LINES will have the foreign key constraint name generated
as ORDLIN_ORD_FK.

However, if a table has multiple foreign keys to one other single table, then the algorithm for the first
foreign key constraint will be the same as above. However, the second constraint with be generated
as follows:

Foreign key = <table alias of the target table>_<table alias of the originating key>_relationship
name_FK

Where ‘relationship name’ is the text associated with the relationship as depicted on the logical
model.

Example:
ORDERS >--------- LOCATIONS (LOC) shipped from

(ORD) >--------- LOCATIONS returned to

The foreign key constraints on ORDERS will have the foreign key constraint names generated as:

ORD_LOC_FK
ORD_LOC_RETURNED_TO_FK

For the sake of clarity, in this case the first FK constraint should be renamed to:

ORD_LOC_SHIPPED_FROM_FK

4.4.1.4 Check Constraints

DES-71	 Name check constraints using the convention:

<table/view_alias><optional_number><_><optional constraint column name>_CK

Both optional values are to be used as desired by the designer.

4.4.1.5 Columns

DES-71.1 Columns which participate in unique or primary keys should be upper case. If data or
business rules require mixed or lower case, add the string "Mixed case required" to the
notes property for that column.

4.4.2 Definition

4.4.2.1 Primary Key Constraint

DES-72	 Set the “Validate In” property to BOTH for primary keys of a table. If for any reason you deviate
from this standard, document the reasons in the Primary Key Description.

DES-73	 Set the “Validate In” property to CLIENT for primary keys of a view. If for any reason you deviate
from this standard, document the reasons in the Constraint Description.

DES-74	 Define all columns that are part of the primary key as not updateable. If any of the columns in the
primary key need to be updated, make the current primary key an alternate key and introduce a
system-generated key to serve as primary key.

DES-75 Define all columns that are part of the primary key as not null.

DES-76 For tables, document the cause of the Primary Key constraint not being enabled.

Section 4 Revised 1/28/2002 Page 9 of 35

DCII Standards Design

4.4.2.2 Unique Key Constraints

DES-77	 Columns in a unique key constraint should either be all defined as NULL or all defined as NOT
NULL. Whenever mixed NULL and NOT NULL columns are used, the reason should be
documented in the notes section of the unique key constraint.

If the columns in a unique key constraint are defined as NULL, your application code should enforce
that for each row in the table either one of the following is true:

All unique key columns are null.

All unique key columns do have a value.

If legacy data causes a unique key to have mixed null and not null columns, then document this
deviation in the description field of the unique key constraint.

DES-78 Unique keys are allowed to be updated, as long as they are protected by a unique index.

DES-79 For tables, document the reasons of the following deviations:

Validate in property is set to Client, Server or None.

The key constraint is not enabled.

Section 4 Revised 1/28/2002 Page 10 of 35

DCII Standards Design

4.5 Indexes

4.5.1 Naming Convention

4.5.1.1 Primary or Unique Key Indexes

DES-80	 Designer does not create primary or unique key indexes. Oracle7 and newer versions implicitly
create the index when creating primary and unique key constraints in the database. Do not create
primary key indexes in the repository as this will result in problems when running the DDL scripts
generated from Designer.

4.5.1.2 Foreign Key Indexes

DES-81 Name Foreign Key Indexes using the convention:

<foreign key constraint name>_I

Designer will automatically create foreign key indexes through the Database Design Transformer if it
is specified in the run options.

Example:

For the foreign key FND_ACT_FK, the resulting foreign key index name would be
FND_ACT_FK_I.

DES-82	 In the case where multiple foreign keys were generated, and one was subsequently changed, it will be
necessary to manually modify the associated index name so that it matches the renamed constraint.

Example:

Designer created:

FND_ACT_FK with index FND_ACT_FK_I

You modified the constraint to:

FND_ACT_FROM_FK

So you will need to modify the index to be:

FND_ACT_FROM_FK_I

4.5.1.3 Non-Key Indexes

DES-83	 For indexes created manually that are not related to any keys, name the index using the convention:

<table alias>_<column name>_NU_I

Where ‘NU’ stands for non-unique.

DES-84 If the index to be created is a bit-mapped index, name the index using the convention:

Section 4 Revised 1/28/2002 Page 11 of 35

DCII Standards Design

<table alias>_<column name>_BM_I

Where ‘BM’ stands for bit-mapped.

DES-85 If the index is on multiple columns, then <column name> will be the first column in the series.

Example:

To improve query performance, an index on the column for Last Name in table Employee (EMP) is
created. The index name will be:

EMP_LAST_NM_NU_I

4.5.2 Definition

DES-86	 Index all foreign keys, unless you predict that the index will not deliver any performance gain or that
maintaining the index will create unacceptable overhead. Document any deviations in the
Description for the foreign key definition using the keyword NO FK INDEX.

DES-87 Index those columns that you reference frequently in WHERE clauses.

DES-88	 The Oracle Designer tool creates indexes to match the primary, foreign and unique key constraints.
This default name should not be changed.

DES-89 Do not define unique indexes, define unique key constraints instead.

DES-90	 Do not deviate from the default value for Init Trans, unless you predict that the index will form a
“hot spot”, requiring many users to update a small number of rows simultaneously. Document any
deviation from the default value in the Description belonging to the index definition using the
keyword INIT TRANS.

DES-91 Do not deviate from the default value for Max Trans.

DES-92	 Document any design decisions in the Description belonging to the index definition using the
keyword FREE SPACE.

DES-93	 In the Description for the index definition, document the reasons for any deviation between the
column sequence for the index and the columns sequence in the key constraint definition. Use the
keyword COLUMN SEQUENCE.

Section 4 Revised 1/28/2002 Page 12 of 35

DCII Standards Design

4.6 Sequences

4.6.1 Naming Convention

DES-94	 Name the only sequence for a table or view using the convention:

<application_prefix>_<table/view_alias>_SEQ

DES-95	 Name multiple sequences for the same table or view using the convention:

<application_prefix>_<logical_name>_SEQ

The logical name may be a column name or whatever name best defines the purpose of the sequence.

4.6.2 Definition

DES-96	 Set the Code Control property to Oracle Sequence if gaps in the sequence numbering are allowed. If
gaps are not allowed, you should set this property to Code Control Sequence.

DES-97 Briefly define the purpose and usage of each sequence.

DES-98	 Use ascending sequences. Explicitly state any deviation from this rule in the description for the
sequence definition.

DES-99	 Increment sequences by a value of 1. Explicitly state any deviation from this rule in the description
for the sequence definition.

DES-100	 Do not cycle sequences. Explicitly state any deviation from this rule in the description for the
sequence definition. Indicate how previously generated numbers are removed before the sequence
“wraps”.

DES-101	 Do not have sequences generated in the exact order of the request. Explicitly state any deviation from
this rule in the description for the sequence definition. Indicate why the sequences should absolutely
be generated in the requested order. A good exception is the use of a sequence generator as an
internal “clock” to indicate the exact order in which certain events occurred by requesting a new
sequence value. Minimum, Maximum

DES-102	 Do not make maximum and minimum values larger than the length of the column for which the
sequence is used.

Section 4 Revised 1/28/2002 Page 13 of 35

DCII Standards Design

4.7 Views

4.7.1 Naming Convention

DES-103 Name the view using the convention:

<table_name>_V

DES-104	 The maximum length for a view name will be 26. If the name of the view exceeds 26, then use the
table alias, abbreviations and acronyms as needed. View names must be singular just like tables.

4.7.2 Definition

DES-105	 Define an alias for the view. This alias should be exactly three characters and should be unique
across all tables and views within the application.

DES-106 Do not use a column prefix for view columns.

DES-107	 Enter the display title that most likely will be used if the view is used as a module base table/view
usage.

DES-108 Define the purpose and usage of the view.

DES-109	 Use the same alias as used for the underlying table itself. If a table is used more than once in the view
definition, add a sequence number to the table alias.

DES-110	 Assign to columns in a view the same name as the columns in the underlying tables. For columns not
directly based on database columns, refer to the conventions for naming columns.

DES-111 If the underlying column is in a domain, the view column should be in the same domain.

DES-112	 The qualifier, if used, should give the end users a clear idea of the purpose and contents of the view.
Use the criteria qualifier if

• Using the table name alone is not unique
• The view is based on a join of 2 or more tables
• The view contains a where clause
• The view is unusually complex.
• The view is a summary.

Examples:

CEFT_ORG_ACTIVE_V provides information on only active ORGANIZATIONS.

CEFT_ORG_VEND_V is a view joining the ORG table to the VEND table.

CEFT_ORG_BANKS_V provides information about CUSTOMERS and their NOTES of type
‘BANKS’.

Section 4 Revised 1/28/2002 Page 14 of 35

DCII Standards Design

4.8 Database Triggers

4.8.1 Naming Convention

DES-113 Name a database trigger using the convention:

<application prefix>_T<table_alias>_<when><type>_<level>

When should be abbreviated:

• Before = B
• After = A

Types should be abbreviated:

• Insert = I
• Update = U
• Delete = D

Level should be abbreviated:

• Row = R
• Statement = S

DES-114	 Extend the name of a row-level trigger, which fires on update with a logical name, if there are more
than one of such update triggers.

4.8.2 Definition

DES-115 The module name should be the same as the name of the trigger.

DES-116	 Define the conditions that apply to all business rules enforced in the database trigger in the Trigger
When condition.

Section 4 Revised 1/28/2002 Page 15 of 35

DCII Standards Design

4.9 Application Design Transformer

There are no applicable standards for the Application Design Transformer.

Section 4 Revised 1/28/2002 Page 16 of 35

DCII Standards Design

4.10 Modules

4.10.1 Scope

The names of all modules developed with and generated from Oracle Designer will conform to these conventions.
This includes all menus, reports, screens, libraries, and webserver modules. In addition, all SQL*Plus reports
(where documented) developed at DCII will also conform to these conventions. The Director of DCII Engineering
must approve changes to these standards.

DES-117	 The following distinctions between modules developed for or associated with Legacy systems and
Vendor-supplied software and those to be developed for new or replacement systems are recognized:

•	 All new or replacement systems developed for DCII will be developed using the DPET-
approved release of the Oracle Designer tool set. All modules, whether custom designed or
generated from Designer, will adhere to standards without exception.

• All modules that use a Designer supported language must be stored in the repository.
• Legacy modules’ names must be changed to conform to the DFAS standard.
•	 Vendor’s modules’ names will not be changed. If objects from a commercial-off-the- shelf

Package (COTS) are recovered into the Designer repository, and any modules are generated in-
house to use those vendor objects, the new modules will be developed according to this standard.

4.10.2 Naming Convention

4.10.2.1 Modules

DES-118 Name Module Short Names for primary modules using the convention:

<application prefix>_<module type identifier><descriptor>

where <descriptor> is a name meaningful to the development team responsible for the module.

See Appendix B for approved application prefixes.

Module type identifiers are:

• F = Form
• K = Package (PL/SQL)
• L = Developer Library
• M = Menu
• O = Object Library
• P = Procedure (PL/SQL)
• R = Report
• S = Shell
• T = Triggers (PL/SQL)
• U = Function (PL/SQL)
• W = Web Form
• X = Template Form

Since DCD utility packages are available for all applications and teams to use, they are themselves
standard and their names shall be DCD_<descriptor> where <descriptor> is a meaningful word
indicating the purpose of the utility.

The DSDS application also uses utility packages specific to DSDS. They are standard and their
names shall be DS_<descriptor> where <descriptor> is a meaningful word indicating the purpose of
the utility within the DSDS application.

Section 4 Revised 1/28/2002 Page 17 of 35

DCII Standards Design

DES-119 Module Short Names should not exceed 20 characters.

DES-120 Define Module Names using logical names, without special characters.

Screen Example:

Short Name: FICS_FUPDATE

Translation: File Inventory Control Subsystem, Form, Update Function

Reports Example:

Short Name: FICS_RUPDATE

Translation: File Inventory Control System, Report, Updates

4.10.2.2 Module Components

All Module Components (MC) must include the alias of the base table name upon which the module
is based.

Example: INV is the MC name for a component based on the Invoices table

DES-121	 If there will be multiple components within a module using the same base table, then the name will
include an underscore followed by an abbreviation of the purpose.

Example: INV_QRY is the MC name for a second component based on the Invoices table that will
be query only

4.10.2.3 Module Component Elements

4.10.2.3.1 Item Groups

DES-122	 Item groups may be named to represent a functional grouping of data. The name may be multiple
words with no underscores between them.

Example: The item group encompasses columns that make up the information for a mailing address
so the item group is named MAILING ADDRESS

DES-123	 If the layout item group is a horizontal item group, the name will be prefixed with an “H”. If it is a
vertical item group, it will be prefixed with a ‘V’. (Additional prefixes may be developed to represent
the additional functions for which item groups are used in reports generation.)

Example: H MAILING ADDRESS is a horizontal item group containing columns for a mailing
address

DES-124	 If the purpose of the item group is to enable the generation of a specific layout then the name will be
LAYOUT #, where # represents an integer.

Example: V LAYOUT 1 is a vertical item group used specifically for layout generation

Section 4 Revised 1/28/2002 Page 18 of 35

DCII Standards Design

DES-125	 If nested item groups are used to achieve a complex layout then the name of the nested item groups
will be NESTED LAYOUT #-#, where the first # represents the number associated with the parent
layout group and the second # is a sequential integer within that group

Example: H NESTED LAYOUT 1-2 represents the 2nd nested item group within the item group
named LAYOUT 1. It is a horizontal item group.

Example: V NESTED LAYOUT 1-2-1 represents the 1st nested item group within the 2nd nested
item group within the item group named LAYOUT 1. It is a vertical item group.

4.10.2.3.2 Unbound Items

DES-126	 All unbound items will be prefixed with UB and an underscore followed by text that describes its
function. Approved abbreviations and acronyms may be used as necessary.

Example: UB_TOTAL_PRICE is an unbound item that will contain the results of a calculation for
total price

4.10.2.3.3 SQL Query Sets

DES-127	 All SQL Query sets will be named with the word UNION and the table alias of the base table usage
in the module component.

Example: UNION EMP is the name of the query set containing a reference to the EMPLOYEES
base table usage

4.10.2.3.4 Navigation Action Items (Buttons)

DES-128	 Navigation action items will be named using a prefix of NA followed by the module component
name followed by the target module component or module name with an underscore in between

Example: NA_CUST_FNAPF010 indicates a button to navigate from the CUST component in the
current module to the module FNAPF010

4.10.2.3.5 Custom Action Items (Buttons)

DES-129	 Custom action items will be named using the prefix CA followed by text that describes the function
of the action item. Approved abbreviations and acronyms may be used as necessary.

Example: CA_CALC_TOTAL indicates a button that when pressed will cause a total to be
calculated

4.10.2.3.6 Application Logic Event Code Segments

DES-130	 All code segments entered to implement custom application logic will be named using a text string
that defines the purpose of the code. Approved abbreviations and acronyms may be used as
necessary.

Example: Use parameter value when present

4.10.2.3.7 Application Logic Named Routines

DES-131 Named routines will conform to the same standard set forth for PL/SQL procedures

Section 4 Revised 1/28/2002 Page 19 of 35

DCII Standards Design

4.10.2.3.8 API Logic Code Segments

DES-132	 API Logic code segments will conform to the same standard set forth for Application Logic code
segments.

4.10.2.4 Named Preference Sets

DES-133	 All preference sets will be defined by the DCII Common Service Functions group. Name preference
sets using the following convention:

CSF_<descriptor>

Where the descriptor is a brief explanation of the purpose of the preference set.

Section 4 Revised 1/28/2002 Page 20 of 35

DCII Standards Design

4.11 PL/SQL, SQL, CTL, PAT, AWK, SHL and KSH

4.11.1 Naming Conventions

See 4.10.2.1 Module Naming Convention

4.11.2 General Standards

DES-134	 PL/SQL modules are considered database objects and are generated via the Server Generator, not the
client Generators used by screens and reports. Placing packages, procedures, functions, and database
triggers in the server tends to reduce traffic across the network.

DES-135	 PL/SQL provides a mechanism to manipulate data procedurally. Thus you can use SQL statements
to manipulate data while using flow control statements to process this data. PL/SQL is a block-
structured language. The basic units that make up a module (packages, procedures, functions, and
anonymous blocks) are logical blocks, which in turn can contain other nested blocks.

A PL/SQL block has three sections:

• Declarative section
• Executable section
• Exception-handling section

DES-136	 All features of the PL/SQL language are allowed unless the feature has been shown to be unsafe.
The GOTO statement is one such feature that has been shown to be unsafe, and will not be used.

DES-137	 All PL/SQL modules must be written in such a fashion that an experienced PL/SQL programmer can
maintain the software without undue recourse to other documents. All modules must be well
documented. At a minimum this includes the purpose of the module, a point of contact, and a history
section.

DES-138 The preferred method for storing modules in the Designer repository is the free-format method.

DES-139	 All PL/SQL procedures and functions will be implemented as part of a PL/SQL package. There will
be no standalone PL/SQL procedures or functions implemented as part of the production system.

4.11.3 Documentation and Formatting

DES-140	 Inline documentation should be used to clarify and or document individual parts of a SQL statement,
and temporarily disable part of a SQL statement.

DES-141	 Any change made to an object (e.g. enable or disable index use or hints used for the cost-based
optimizer) should include comments documenting the changes as well as the original condition of the
statement.

For TDRs, fill in the required information PLUS copy the TDR subject line into the "Change Made
(brief description) area.

A Change History Comment shall be added to ALL scripts and will contain the following
information:

Section 4 Revised 1/28/2002 Page 21 of 35

--

DCII Standards Design

Date SCR# (or TDR#) Rel# Developer Change Made
(last name, first initial) (brief description)

Table format (ABOVE) OR in Linear format (BELOW)

Date

SCR# (or TDR#)

Rel#

Developer (last name, first initial)

Change Made (brief description)

DES-142	 Simple comments shall be documented for CTL, PAT, AWK, SHL, KSH, SQL and PL/SQL objects
as follows:

-1- CTL or PAT files shall be commented by putting a "--" in the first 2 positions of the 1st line.

CTL or PAT Example:

-- Date SCR# (or TDR#) Rel# Developer Change Made
(last name, first initial) (brief description)

load data
into TABLE nsa_ay_detail

append

(

nh_batch_file_id constant '&batch_num',

rec_seq_id sequence (1, 1),

-2- AWK files shall be commented by putting a "#" in the first position of the 2nd line.

AWK Example:

#! /usr/bin/awk -f

Date SCR# (or TDR#)

BEGIN{
htot = 0
dtot = 0
tot = 0
s1=0
s2=0
}

Rel# Developer Change Made
(last name, first initial) (brief description)

-3- SHL and KSH files shall be commented by putting a # in the first position on the 1st line

SHL and KSH Examples:

--

Name : nsa_somards_main.shl

#

Description : SOMARDS main routine. Handles call of every sub-

routine

needed to format, validate and load a SOMARDS file.

#

Returns : the batch id assigned for the file being processed.

Section 4 Revised 1/28/2002 Page 22 of 35

--

DCII Standards Design

#

Parameters : Seq Name Description

1 dir_filename Directory and Filename.

#

Usage : nsa_somards_main.shl <dir_filename>

#

Called by : nsa_somards_load.shl

Calls : nsa_chkamt.awk

nsa_somards_dtetime.awk

nsa_somards_fmt.awk

nsa_fmtatt.awk

nsa_header_upd.sql

nsa_detail_del.sql

ay_post.sql

nsa_k_utl.timediff

#

Revision History:

Date SCR# (or TDR#) Rel# Developer Change Made
(last name, first initial) (brief description)
01-17-2001 Sormillon, J Revised Source
System/Site
validation to
take site id
from header
rather than from
the filename

-4- SQL and PL/SQL files shall be commented by putting “--“ before the comment or using /* and */
around the comments

For a given PL/SQL package:

Change information to the SPEC shall be documented in the SPEC using the format below.

Change information to the PACKAGE BODY shall be documented in the PACKAGE BODY
using the format below.

Also, the change information shall be documented / stored in Designer in the NOTE property
using the format below.

-- Date SCR# (or TDR#) Rel# Developer
(last name, first initial)

Table format (ABOVE) OR in Linear format (BELOW)

-- Date

-- SCR# (or TDR#)

-- Rel#

-- Developer (last name, first initial)

-- Change Made (brief description)

Change Made
(brief description)

Section 4 Revised 1/28/2002 Page 23 of 35

DCII Standards Design

SQL and PL/SQL Examples:

Single Line Example:

-- statement created on 05/10/00 by Ron Plew.
select t1.column1, t1.column2, t1.column3, t1.column4,

t1.column5, t1.column6
from table1 t1;

Comment within a SQL statement:
select t1.column1, t1.column2,

t1.column3, t1.column4,

t1.column5, t1.column6 -- added column6 10 May 00, Ron Plew

from table1 t1;

Multi-line comment brackets (/* & */) should be on lines by themselves in columns 1 and 2.
Example:

/*

This statement was written on 05/10/00 by Ron Plew.

The purpose of the statement is to return specific data quickly

and efficiently.

*/

select t1.column1, t1.column2, t1.column3, t1.column4,

t1.column5, t1.column6

from table1 t1;

Combination Example:

-- Select all Conflicting Job Responsibilities
select jr_nm2 -- get job responsibility in right column where entered JR matches JR in left column
from csf_cnflct_of_int
where jr_nm = :acs.jr_nm
union
select jr_nm -- get job responsibility in left column where entered JR matches JR in right column
from csf_conflct_of_int
where jr_nm2 = :acs.jr_nm;

DES-143	 A standard header must be used for all PL/SQL modules. It must be placed between the name and
the “IS”.

Example:
PACKAGE package_name IS

/*

|| Author: S. Feuerstein 11/95

||

|| Overview: Manage list of selected items correlated with a block on the

|| screen

||

|| Major modifications (when, who, what)

|| 12/94 - SEF - Create package

|| 3/95 - JRC - Enhance to support coordinated blocks

*/

DES-144	 A header must be used for the bodies of all modules that are database objects (functions, procedures,
package bodies, and triggers). The modification information should include changes in the
implementation due to maintenance, modifications etc.

Section 4 Revised 1/28/2002 Page 24 of 35

DCII Standards Design

DES-145	 Use consistent spacing for indentation of all lexical elements. Each new lexical level should be
further indented. Three spaces is recommended for indentation.

DES-146	 Align parameter passing modes. The first parameter in the list can either be on the same line as the
subprogram name or on the line following.

Example:
PROCEDURE sample (copied_in IN some_type,

copied_in_out IN OUT some_other_type,

copied_out OUT yet_another_type);

or—

PROCEDURE sample (copied_in IN some_type,

copied_in_out IN OUT some_other_type,

copied_out

DES-147	 Vertically align major block-keywords.
alignment.

Example # 1:

DECLARE

…

BEGIN

…

EXCEPTION

…

END <name>;

Example # 2:
PROCEDURE … IS

…

BEGIN

…

EXCEPTION

…

END <name>;

Example # 3:
FUNCTION … RETURN…

IS

…

BEGIN

…

EXCEPTION

…

END <name>;

4.11.4 Data Load Standards

OUT yet_another_type);

As an option, the keyword ‘IS’ may be included in this

DES-148 Whenever possible, the relationship from staging table to target table should be 1:1.

DES-149	 All data loads shall capture throughput data. This can be accomplished via PL/SQL calls to the
CSF_TIMING package.

DES-150 All data loads shall provide debugging messages via the PL/SQL package CSF_DEBUG.

DES-151	 All data loads will have periodic commits. The commit rate will be parameterized to facilitate
tuning.

Section 4 Revised 1/28/2002 Page 25 of 35

DCII Standards Design

DES-152	 All staging table data will be deleted immediately after successful processing (i.e. record at a time).
Data that contains errors is to remain in the staging table.

DES-153	 Error handling and messages should be meaningful and provide sufficient information to fix errors.
For example, an additional column (ERR_TXT VARCHAR2(2000)) in a staging table provides a
good method for writing error information for a single record. CSF_ERROR_LOG provides a good
method for global messages relative to a load.

DES-154	 Grouping all PL/SQL procedures into a single package is preferred over standalone procedures. For
example, a Navy load package might contain all of the procedures for loading Navy data.

4.11.5 PL/SQL Coding Standards

DES-155 Use underscores to separate words within an identifier.

DES-156	 Make PL/SQL keywords distinguishable from other elements of the program. There are at least two
common standards in existence.

• Keywords should be in uppercase and user-defined identifiers in lowercase.
• Keywords should be in lowercase and user-defined identifiers in Initcaps.

Neither addresses Built-in function and package names (LENGTH, DBMS_OUTPUT etc.)

DES-157	 Spell out identifiers completely unless there is a common, unambiguous abbreviation that takes up
significantly fewer characters. Use the standard DFAS abbreviations

DES-158 Avoid using database column names or database table names as the names of variables.

DES-159 Variables declared at the outermost level of a package body should be prefixed with ‘g_’.

DES-160	 Boolean variables should be named to indicate a true/false proposition. Variables of all other
datatypes should be nouns.

Example:
Account_is_open Boolean;

Account_Name VARCHAR2 (100);

DES-161 Name a parameter in terms of its mode (IN, OUT, IN OUT). Use the mode as a suffix. Examples:
PROCEDURE Place_call

(company_id_in IN NUMBER,

call_type_in_out IN OUT VARCHAR2,

company_rm_out OUT VARCHAR2)

DES-162 Name a procedure to describe the action taken (verb-noun structure, such as ‘calculate_totals’).

DES-163	 The rules for function names should be the same as the rules for variables (see NAM-002). That is,
the name of a Boolean function should obey the same rules as the name of a Boolean variable.

DES-164	 The name of a cursor should be descriptive and should end with the suffix ‘_cur’. The name of a
record anchored to a cursor or the name of a control variable in a cursor FOR-loop should be the
same name as the cursor but should use the suffix ‘_rec’ instead of ‘_cur’ (See NAM-014).

DES-165 The name of a user-defined type should have a suffix ‘_type’

Example # 1:

Section 4 Revised 1/28/2002 Page 26 of 35

DCII Standards Design

TYPE strings_type IS TABLE OF VARCHAR2(100)

INDEX BY BINARY_INTEGER;

Example # 2:
my_list_tab strings_type;

DES-166	 Record variables should be suffixed with “_rec”. This should be true irrespective of the category of
record (user-defined, table-based, and cursor-based).

Example:
TYPE name_type IS RECORD

(

first_name VARCHAR2(20),

last_name VARCHAR2(20)

);

person_rec name_type;

DES-167	 PL/SQL collection (index-by, VARRAY and nested tables) variables should be named to indicate
their collective nature. This can be accomplished by naming the collection as a plural noun or by
distinguishing the variable name with a collective suffix such as ‘_tab’, ‘_tbl’ or ‘_list’.

DES-168	 Name each block statement (anonymous block) with a block label; include that same label between
the END of the module and the semicolon.

DES-169	 Include the name of any module (package spec, package body, function, procedure, block statement)
between the END of the module and the semicolon.

DES-170	 For a numeric FOR loop, incorporate the word “index” or “counter” or something similar into the
name of the loop index.

Name each loop with a loop label and repeat the label following the END LOOP. This standard can
be ignored in the case of very small loops whose intent is easily discerned.

Example:
FOR year_index IN 1..12 . . .

…

…

END LOOP; -- year_index

4.11.5.1 PL/SQL Arguments

DES-171 Name Arguments for PL/SQL packages and procedures using the following convention:

p_<argument name>

Where <argument name> is a logical, meaningful, and concise name representing the value that will
be passed to the program unit. Where the argument will be used to hold the value of a column in a
SQL statement, then <argument name> must be the same as the column name.

DES-172	 Precede the <argument name> with “P” so that there are no conflicts with database object names or
confusion as to which are PL/SQL arguments and which are database objects. All arguments must
be in lower case, excluding the prefix.

Example: p_header_id

Section 4 Revised 1/28/2002 Page 27 of 35

DCII Standards Design

4.11.5.2 PL/SQL Variables

DES-173 Name PL/SQL program variables using the following convention:

v_<variable name>

Where <variable name> should be a logical, meaningful, and concise name representing the value the
variable will hold. Where the variable will be used to hold the value of a column in a SQL statement,
then <variable name> must be the same as the column name.

DES-174	 Precede the <variable name> with “v” so that there are no conflicts with database object names or
confusion as to which are PL/SQL variables and which are database objects. All variables must be in
lower case, including the prefix.

Example: v_header_id

4.11.5.3 PL/SQL Constants

DES-175 Name PL/SQL program constants using the following convention:

c_<constant name>

Where <constant name> should be a logical, meaningful, and concise name representing the use of
the value the constant will hold. Where the constant will be used to hold a value to be assigned to a
column in a SQL statement, then <constant name> must be the same as the column name.

DES-176	 Precede the <constant name> with “c” so that there are no conflicts with database object names or
confusion as to which are PL/SQL constants and which are database objects or variables. All
constants must be in lower case, including the prefix.

Example: c_header_id

4.11.5.4 PL/SQL Global Variables (forms only)

DES-177 Name Oracle Forms global variables using the following convention:

global.<variable name>

Where <variable name> should be a logical, meaningful, and concise name representing the value the
variable will hold. Where the variable will be used to hold the value of a field in the data block, then
<variable name> must be the same as the field name.

Global variables must always be referenced with ‘:global.’ preceding the variable name. Therefore,
no additional prefix is required to distinguish global variables from local or standard variables. In
order to avoid confusion, do not use the same name for both a global and a local variable.

Example: header_id (i.e., :global.header_id)

4.11.5.5 PL/SQL Declarative Section

DES-178 Each declaration should begin on a new line.

DES-179	 Whenever possible, anchor variables, record components, PL/SQL table components, and parameters
to the appropriate database tables, database columns and cursors.

Section 4 Revised 1/28/2002 Page 28 of 35

DCII Standards Design

NOTE: When providing packaged resources to users, in some circumstances, anchoring has a
downside. Consider the situation where the user has access to the package but does not have access
to the underlying database tables. In this case, anchoring does not give the information needed in
order to use the spec. It might be preferable to describe the interface (records, PL/SQL tables,
subprogram parameters etc.) in terms of standard datatypes instead of anchored datatypes.

DES-180 Declare variables as constants if their values do not change throughout the code.

DES-181	 Specify a full column list (as opposed to using ‘*’) in each cursor declaration unless all the columns
are selected AND input into a variable declared with the <cursor>%ROWTYPE (as opposed to
inputting into a list of variables). In the case of tables with a large number of columns, the
programmer may opt to use SELECT * if the majority of columns are being used in the SELECT
statement.

DES-182	 Explicitly declare exceptions for each Oracle error condition that is expected in the normal execution
of the program and is not already mapped to an Oracle exception name. Use the pragma,
EXCEPTION_INIT, to map the exception to the Oracle error number.

DES-183	 Provide well-delimited sections for the following categories: Cursor declarations, type and subtype
declarations, variable and constant declarations, exception declarations, and subprogram declarations.
The variable declaration section may be further decomposed into scalar variables, record variables
and collection variables.

DES-184 To avoid hardcoding of literals, declare named constants for use in the executable portion of a block.

4.11.5.6 PL/SQL Executable Section

DES-185 Do not use GOTO statements.

DES-186	 Close all explicitly opened cursors. This is especially important for cursors declared in packages.
Cursors declared in other blocks are implicitly closed when the block is abandoned; close them
anyway.

DES-187	 Use explicit datatype conversion functions instead of implicit conversions. An exception is the
concatenation of items in a call to DBMS_OUTPUT.PUT_LINE for debug purposes.

DES-188	 Remove all hard coded values (except for 0 and 1) for the program and replace them with named
constants (see DEC-012) or functions defined in packages. It is easier to change a named constant
once in a separate area than to catch and change each hard coded value in a program or function.

DES-189 Never exit from a numeric or cursor FOR loop or a WHILE loop with an EXIT or RETURN.

DES-190 Always test for NULL with ‘<expression> IS [NOT] NULL’.

Remember that NULL is never equal to any value and is never not equal to any value.

DES-191	 In a package that calls the built-in functions, USER and SYSDATE, add the following variables and
refer to them instead of the functions:

g_user VARCHAR2(50) := USER;

g_sysdate DATE := SYSDATE;

4.11.5.7 PL/SQL Exception Handling

DES-192	 Trap predefined oracle exceptions by name. Do not use WHEN OTHERS and then discriminate on
the SQLCODE function result.

Section 4 Revised 1/28/2002 Page 29 of 35

DCII Standards Design

DES-193	 All expected Oracle error codes should be handled with the predefined Oracle exception name or a
user defined exception name that has been mapped with pragma EXCEPTION_INIT procedure.

DES-194 Do not use exceptions to perform branching logic.

DES-195	 Each exception handler for a function must return a value or raise an exception (either the same one
using RAISE or a different using its name). Remember that if a function reaches its END, an
exception (function returned without value) is raised. The compiler will check to see that your
function contains a RETURN but will not check to see that your EXCEPTION handler part has a
RETURN.

DES-196	 When using the WHEN OTHERS clause, capture (display, log, etc.) the actual error condition (using
the built-in function, SQLERRM) in the exception handler.

4.11.6 SQL Coding Standards

4.11.6.1 General Layout of SQL Statements

DES-197 Lowercase should be used when writing SQL statements.

Note: Literal constants may require uppercase characters.

DES-198 Start each clause that contains a column name, table name, or SQL reserved word on a new line.

DES-199 Align code by using spaces to indent. Do not use tabs.

Example:
select t1.column1, t1.column2

t1.column3, t1.column4

from table1 t1

where exists (select t2.column1

from table2 t2)

and t1.column1 > value1

order by 1;

4.11.6.2 SQL Statements - General

DES-200	 Put single space after every keyword, identifier, comma, and operator. Do not put a space between
scalar or set functions, or within parenthesis. An exception for the parenthesis is: When enclosed in
parenthesis, a comma should be followed by a space.

Example:
select t1.column1, t1.column2, t1.column3 * value1,

min(t1.column4), t1.column5, t1.column6,

substr(t1.column7, 1, 3)

from table1 t1

where t1.column1 > value2;

DES-201	 Use aliases for tables and columns. The table alias should be the initials from the table name or an
abbreviation. The alias should be less than ten characters. Similar names will be suffixed with
numbers. Prefix each column with the table alias followed by a period and then the column name.
Column names should denote any conversions of data and source table.

Example:
select t1.column1, t1.column2, addr.column3,

addr.column4, mt.column5, mt.column6,

Section 4 Revised 1/28/2002 Page 30 of 35

DCII Standards Design

to_char(mt.column1) mt_column1_char

from table1 t1,

address addr,

my_table mt;

DES-202	 Use the NVL function on any column that can contain null values when it is being compared to an
actual value or when it is being used in a calculation.

Example:
select nvl(t1.column1, 0) * value1

from table1 t1

where nvl(t1.column5, 0) <= value2;

4.11.6.3 SQL Statements – Select

DES-203 Start the select clause on a separate line. If a long column list requires another line, indent the line.

Example:
select column1, column2, column3, column4,

column5, column6

DES-204 Use spaces to follow the select keyword and columns except for the last column in the list.

Example:
select column1, column2, column3, column4

DES-205 Do not use the asterisk (*) to select all columns. Specifically list the columns required.

DES-206 When using expressions, make sure the expression is the last operation performed, especially in
group by functions. For example, multiply the result of a MAX function by 1.5, instead of each
value, to determine the maximum value.

Example:
select max(t1.number1) * value1 max_val

from table1 t1;

DES-207 To use a hint in a select statement, the hint must immediately follow the keyword select separated
by a single space.

Example:
select /*+ full(table1) */

4.11.6.4 SQL Statements – Union, Intersect, and Minus

DES-208 The union, intersect, and minus should be on a line of their own.

Example:
select column1, column2

from table1

union

select column1, column2

from table2;

4.11.6.5 SQL Statements – From

DES-209	 Start the from clause on a separate line. Put only one table per line followed by a comma except after
the last table in the list. A single space must be between the table name and the alias.

Section 4 Revised 1/28/2002 Page 31 of 35

DCII Standards Design

Example:
from table1 t1,

table2 t2,

table3 t3

4.11.6.6 SQL Statements – Where

DES-210	 Start the where clause on its own line. Put each condition on a separate line. The most restrictive
condition should go last in the where clause.

Note: notice the and was indented.

Example:
where column1 > 0 -- least restrictive condition

and column2 = ‘1’

and column3 >= ‘2’ -- most restrictive condition

DES-211 Place join conditions at the beginning of the where clause.

Example:
Where column1 = column1 -- join

and column2 = column2 -- join

and column2 = ‘1’ -- condition

DES-212 Use the IN operator instead of multiple OR conditions on the same column.

Example:
where column2 in (‘1’, ‘3’, ‘5’, ‘7’)

Instead of

where column2 = ‘1’

or column2 = ‘3’

or column2 = ‘5’

or column2 = ‘7’

DES-213 When using the OR condition with different columns, use parentheses around the OR conditions.

Example:
where (column2 = ‘1’

or column3 = ‘3’)

4.11.6.7 SQL Statements – Group By and Having

DES-214 Only group on the columns used by the select clause.

Example:
select t1.column1, t1.column4, count(*), max(t1.column5)

from table1 t1

where t1.column3 = value1

group by t1.column1, t1.column4;

DES-215	 Use as many conditions in the where clause as possible rather than in the having clause. This
prevents the having clause from placing the conditions since indexes are not used by the having
clause.

DES-216 The having clause should only contain group functions for limiting the data.

Section 4 Revised 1/28/2002 Page 32 of 35

DCII Standards Design

Example:
select t1.column1, t1.column4, count(*), max(t1.column5)

from table1 t1

where t1.column3 = value1

group by t1.column1, t1.column4

having count(*) > value2;

4.11.6.8 SQL Statements – Connect By

DES-217	 Always specify a starting point using the start with clause. This provides clarity for the usage of the
connect by clause.

DES-218 Do not use the connect by clause with recursive data.

4.11.6.9 SQL Statements – Order by

DES-219 Use the order by clause only if there is a requirement to sort the data.

DES-220	 Only use numbers for the order by columns when the set operators (union, minus and intersect) are
being used. Otherwise, use column names.

Example:
select t1.column4, t1.column5, t1.column8

from table1 t1

order by t1.column4, t1.column5;

Example using set operators
select t1.column4 emp_name,

t1.column5 emp_dept,

t1.column8 emp_loc

from table1 t1

union

select t2.column1,

t2.column2,

t2.column10

from table2 t2

order by 1, 2, 3;

DES-221	 If a mix of ascending and descending order sorts is used, indicate the type of sort on all order by
columns.

Example:
select t1.column4, t1.column5, t1.column8

from table1 t1

order by t1.column4 desc,

t1.column5 asc,

t1.column8 desc;

4.11.6.10 SQL Statements – For Update

DES-222	 The column selected in the for update clause will be the primary key column of the table being
updated.

Example:
select t1.column4, t2.column1, t2.column3

from table1 t1,

table2 t2 -- primary table

where t1.column1 = t2.column1

for update of t2.column1; -- primary key

Section 4 Revised 1/28/2002 Page 33 of 35

DCII Standards Design

DES-223	 The NOWAIT option of the for update clause will not be used in SQL. It will be used in PL/SQL
only, where the exception can be handled.

4.11.6.11 SQL Statements – Insert

DES-224 The keyword values should be on a separate line.

Note: Notice indentation of column listing and values.

Example:
Insert into table1 (column1, column2, column3,

column4, column5)

values

(value1, value2, value3, value4, value5);

DES-225 Use a full column list for an insert statement for the target table and for the select list when it exists.

Example:
insert into table4 (column1, column2, column3)

select t2.column3, t2.column4, t2.column5

from table2 t2;

DES-226	 When no value is being inserted into a column, specify the NULL value. Do not leave the column off
the column list.

Example:
insert into table4 (column1, column2, column3)

select t2.column3, null, t2.column5

from table2 t2;

4.11.6.12 SQL Statements – Update

DES-227 List each column being updated on a separate line.

Note: Although the where clause is optional, the use of the where clause is highly recommended. If
not used, all rows will be updated with the new value.

Example:
update table1 t1

set t1.column1 = value,

t1.column2 = value

where t1.column1 = value;

DES-228	 The ROWID column can only be used in an update when a select for update statement has locked the
rows.

4.11.6.13 SQL Statements – Delete

DES-229	 The format of a delete statement has delete on the first line and from table name on the second line.
This is to emphasis that a delete is taking place.

Note: Although the where clause is optional, the use of the where clause is highly recommended. If
not used, all rows will be deleted.

Example:
delete

Section 4 Revised 1/28/2002 Page 34 of 35

DCII Standards Design

from table1 t1

where t1.column1 = value;

4.11.6.14 SQL Statements – Subqueries

DES-230	 The column list in the where clause of the main query should not contain concatenation or
conversion functions. All conversions or concatenation should be done in the select list of the
subquery.

Example:

Note indentation
select t1.column1, t1.column2

t1.column3, t1.column4

from table1 t1

where exists (select 'x' --subselect

from table2 t2

where t2.column1 = t1.column2)

and t1.column1 > value1

order by t1.column1;

Section 4 Revised 1/28/2002 Page 35 of 35

	4 Design Standards
	4.1 Database Design Transformer
	4.1.1 Settings
	4.1.1.1 Database
	4.1.1.2 Keys
	4.1.1.3 Other Settings

	4.2 Tables
	4.2.1 Naming Convention
	4.2.2 Definition

	4.3 Columns
	4.3.1 Naming Convention
	4.3.2 Definition

	4.4 Constraints
	4.4.1 Naming Convention
	4.4.1.1 Primary Key Constraint
	4.4.1.2 Unique Key Constraints
	4.4.1.3 Foreign Key Constraints
	4.4.1.4 Check Constraints
	4.4.1.5 Columns

	4.4.2 Definition
	
	4.4.2.1 Primary Key Constraint
	4.4.2.2 Unique Key Constraints

	4.5 Indexes
	4.5.1 Naming Convention
	4.5.1.1 Primary or Unique Key Indexes
	4.5.1.2 Foreign Key Indexes
	4.5.1.3 Non-Key Indexes

	4.5.2 Definition

	4.6 Sequences
	4.6.1 Naming Convention
	4.6.2 Definition

	4.7 Views
	4.7.1 Naming Convention
	4.7.2 Definition

	4.8 Database Triggers
	4.8.1 Naming Convention
	4.8.2 Definition

	4.9 Application Design Transformer
	4.10 Modules
	4.10.1 Scope
	4.10.2 Naming Convention
	4.10.2.1 Modules
	4.10.2.2 Module Components
	4.10.2.3 Module Component Elements
	4.10.2.3.1 	Item Groups
	4.10.2.3.2 	Unbound Items
	4.10.2.3.3	SQL Query Sets
	4.10.2.3.4 	Navigation Action Items (Buttons)
	4.10.2.3.5	Custom Action Items (Buttons)
	4.10.2.3.6	Application Logic Event Code Segments
	4.10.2.3.7 	Application Logic Named Routines
	4.10.2.3.8	API Logic Code Segments

	4.10.2.4 Named Preference Sets

	4.11 PL/SQL, SQL, CTL, PAT, AWK, SHL and KSH
	4.11.1 Naming Conventions
	4.11.2 General Standards
	4.11.3 Documentation and Formatting
	Table format (ABOVE) OR in Linear format (BELOW)

	4.11.4 Data Load Standards
	4.11.5 PL/SQL Coding Standards
	4.11.5.1 PL/SQL Arguments
	4.11.5.2 PL/SQL Variables
	4.11.5.3 PL/SQL Constants
	4.11.5.4 PL/SQL Global Variables (forms only)
	4.11.5.5 PL/SQL Declarative Section
	4.11.5.6 PL/SQL Executable Section
	4.11.5.7 PL/SQL Exception Handling

	4.11.6 SQL Coding Standards
	4.11.6.1 General Layout of SQL Statements
	4.11.6.2 SQL Statements - General
	4.11.6.3 SQL Statements – Select
	4.11.6.4 SQL Statements – Union, Intersect, and Minus
	4.11.6.5 SQL Statements – From
	4.11.6.6 SQL Statements – Where
	4.11.6.7 SQL Statements – Group By and Having
	4.11.6.8 SQL Statements – Connect By
	4.11.6.9 SQL Statements – Order by
	4.11.6.10 SQL Statements – For Update
	4.11.6.11 SQL Statements – Insert
	4.11.6.12 SQL Statements – Update
	4.11.6.13 SQL Statements – Delete
	4.11.6.14 SQL Statements – Subqueries

